
Cryptanalysis of the Knapsack Generator

Simon Knellwolf Willi Meier

FHNW, Switzerland

FSE 2011, February 14-16, Lyngby, Denmark.

1 / 15

Knapsack Generator

n-bit integers w0, . . . , wn−1 (weights)

n-bit LFSR sequence u0, u1, u2, . . . (control bits)

Keystream generation

◮ Addition vi =
n−1∑

j=0

ui+jwj mod 2n

◮ Truncation zi = vi ≫ ℓ

◮ Output n− ℓ bits of zi

Secret key: weights + initial state of LFSR = n2 + n bits

2 / 15

Background

Introduced by Rueppel and Massey in 1985

Alternative to boolean filter / combining function

Security is not related to the hardness of the knapsack problem

3 / 15

Previous Cryptanalysis

Rueppel, 1986:

◮ LSBs of vi have low linear complexity: choose ℓ = ⌈logn⌉

◮ Effective key length ≥ n(⌊logn⌋ − 1) bits

Von zur Gathen and Shparlinski, SAC 2004:

◮ Attacks based on lattice basis reduction

◮ Known control bits: only for ℓ ≥ log(n2 + n), n2 − n outputs

◮ Guess and Determine: complexity difficult to estimate, no
empirical results

Von zur Gathen and Shparlinski, J. Math. Crypt. 2009:

◮ Fast variant of the Knapsack Generator

◮ Analysis of output distribution

4 / 15

A System of Modular Equations

Generation of s outputs (without truncation):

v = Uw mod 2n

where U is a s× n matrix containing the control bits.

◮ U has full rank modulo 2n.

◮ w = U−1
v mod 2n if U is known and s = n.

◮ U is determined by n bits: Guess and Determine.

Challenge: Output is truncated, we only get z = v ≫ ℓ.

5 / 15

Weight Approximation Matrix

Direct approach: Don’t care about the discarded bits

w̃ = U−1(z ≪ ℓ)

≈ U−1(z ≪ ℓ) + U−1
d = w

where d = v − (z ≪ ℓ).

◮ s = n: bad approximation, because U−1
d is large.

◮ s > n: not a unique U−1, but many choices for T such that
TU = In.

T is called approximation matrix and w̃ = T (z ≪ ℓ).

6 / 15

Prediction with Approximate Weights

Prediction of a subsequent sum:

ṽs = usw̃ = usT (z ≪ ℓ)

≈ usT (z ≪ ℓ) + usTd = vs

Sufficient condition for prediction (at least one bit with p > 0.5):

⌈log‖T‖⌉ ≤ n− ℓ− 1,

where ‖T‖ =
∑

i,j |tij |.

7 / 15

Finding Good Approximation Matrices

Task: Find T such that TU = In with small coefficients.

Row by row, this is a special case of the following problem:

Problem: Find a short vector x such that xA = b.

Solving strategy

1. Find some solution x
′.

2. Find a close vector x′′ in the kernel of A.

3. Set x = x
′ − x

′′.

At step 2: Use a variant of Babai’s algorithm on a LLL reduced
kernel basis. The basis must be reduced only once for all rows.

8 / 15

Empirical Results: Approximation Matrix

10

15

20

25

30

35

68 72 76 80 84 88 92 96

L
og

ar
it
h
m
ic

n
or
m

of
T

average
lower quartile
upper quartile

Figure: Average logarithmic norm of T for n = 64 in function of s.

9 / 15

Empirical Results: Prediction

Scenario: known control bits

s− n n = 32 n = 64 n = 128 n = 256

8 20.6 42.9 85.3 164.6
16 22.2 48.7 100.9 203.4
24 22.6 50.3 105.9 216.4
32 22.7 50.8 108.1 222.4

Table: Average number of correctly predicted bits per output for
ℓ = log n.

10 / 15

The Full Attack (Guess and Determine)

Scenario: known keystream

1. Guess u0, . . . , un−1 and derive s× n matrix U .

2. Find T based on U .

3. Use T and z to compute w̃.

4. Compute t predictions and check their λ most significant bits.
If almost all of them are correct, the control bits have been
guessed correctly. Otherwise, go back to step 1.

11 / 15

Empirical Results: Attack for n = 32

Recall: key length = 322 + 32 = 1056 bits

The full attack is practical on a Desktop Computer:

◮ Approximation parameter: s = 40.

◮ Checking parameter: t = 20, λ = 5.

In about three days:

◮ Correct initial control bits identified (32 bits).

◮ 85% of the weight bits recovered (about 870 bits).

◮ 22 bits/output can be predicted (output = 27 bits).

12 / 15

Fast Knapsack Generator

R an arbitrary ring

◮ Choose a, b ∈ R.

◮ Compute the n weights as wi = abn−i.

The vi can be computed recursively:

vi+1 = bvi − abn+1ui + abui+n

R = Fp: provable results for uniformity of output distribution.

13 / 15

Fast Knapsack Generator

The vi can be computed recursively:

vi+1 = bvi − abn+1ui + abui+n

Basic attack strategy (for R = Fp)

1. Find i such that ui = 0 and ui+n = 0.

2. Guess the discarded bits of vi and vi+1 (2ℓ bits).

3. Compute b = vi+1/vi and a = vi/
∑n−1

j=0
ui+jb

n−j .

4. Check the guess.

Maximum number of guesses: 22ℓ.

14 / 15

Conclusion

The concept of the weight approximation matrix leads to an
effective guess and determine attack. The use of LLL in this
context gives striking results:

◮ All attacks work for relevant parameters n and ℓ:

n 32 64 128

ℓ up to ≈ 25 ≈ 42 ≈ 98

◮ Known control bits: weights can be approximated from no
more than n+ 8 outputs.

◮ Known keystream: security is not higher than n bits (at the
prize of a n2 + n bit key).

15 / 15

